Giri, Ashutosh
Prof. Giri's group focuses on energy transport, conversion, and storage, with an emphasis on understanding heat transfer across nano- to macro-length scales. They combine laser-based optical techniques with state-of-the-art computational tools to probe thermal transport mechanisms in complex materials and systems.
Awards and Honors
- ASME K-16 Outstanding Early Faculty Career in Thermal Management Award, 2025
- Presidential Early Career Award for Scientists and Engineers (PECASE), 2025
- College of Engineering Outstanding Early Career Faculty Research Award, URI (2023)
- Bergles-Rohsenow Young Investigator Award in Heat Transfer, ASME (2022)
- Petroleum Research Fund Doctoral New Investigator Award, ACS (2022)
- Office of Naval Research, Young Investigator Award (2021)
- Scientist of the Year, Mechanical and Aerospace Engineering, UVa (2019)
Faster operating speeds and continued miniaturization in modern optoelectronic devices have introduced significant challenges in thermal management and heat dissipation. As device dimensions shrink, heat generation arising from complex interactions among multiple energy carriers becomes increasingly difficult to predict and control. Addressing these challenges requires the ability to understand and tune thermal transport at submicron length scales and ultrafast femtosecond-to-picosecond time scales.
The central goal of our research is to uncover the fundamental mechanisms governing energy carrier excitation, transport, and relaxation across a wide range of material systems. By developing a predictive understanding of how heat is generated, transferred, and dissipated, we aim to enable strategies that both mitigate thermal limitations in technologically relevant optoelectronic devices and harness thermal processes for sustainable energy applications.
[115] Dionne, J.C., Hopkins P.E, Bose, A., Giri, A., “Conducting Salts Govern Thermal Boundary Conductance across Solid Electrode/Organic Liquid Electrolyte Interfaces in Lithium-Ion Batteries,” ACS nano 19 (49), 41595-41604, (2025).
[114] Thakur, S., Giri, A., “Guiding the Design of Multifunctional Covalent Organic Frameworks: High-Throughput Screening of Thermal and Mechanical Properties,” The Chemistry of Materials 37 (21), 8978-8995, (2025).
[113] Islam, Md.R., Karna, P., Bhatt, N., Thakur, S., Heinrich, H., Hirt, D.M., Zare, S., Jezewski, C., Lee, R.T.P., Tapily, K., Gaskins, J.T., Landon, C.D., King, S.W., Giri, A., Hopkins, P.E., “Unveiling phonon contributions to thermal conductivity and the applicability of the Wiedemann-Franz Law in ruthenium and tungsten thin films,” Advanced Functional Materials e11592 (2025).
[112] Bhatt, N., Thakur, S., Karna, P., Giri. A., Feng, T., Hachtel, J.A., Ravichandran, J., Pantelides, S.T., Hopkins, P.E., “Achieving Exceptionally Enhanced Thermal Conductivity and Bulk Modulus in Polar Insulators Via Modification of Chemical Bonding,” The Journal of Physical Chemistry Letters 16, 8850-8860 (2025).
[111] Hoque, Md.S.B., Hoglund, E.R., Zhao, B., Bao, D.-L., Zhou, H., Thakur, S., Osei-Agyemang, E., Hattar, K., Scott, E.A., Surendran, M., Tomko, J.A., Gaskins, J.T., Aryana, K., Makarem, S., Balasubramanian, G., Giri. A., Feng, T., Hachtel, J.A., Ravichandran, J., Pantelides, S.T., Hopkins, P.E., “Ruddlesden-Popper chalcogenides push the limit of mechanical stiffness and glass-like thermal conductivity in crystals,” Nature Communications 16, 6104 (2025).
[110] Md Adnan Mahathir Munshi, Emdadul Haque Chowdhury, Luis E Paniagua-Guerra, Jaymes Dionne, Ashutosh Giri, Bladimir Ramos-Alvarado, “Ruddlesden-Popper chalcogenides push the limit of mechanical stiffness and glass-like thermal conductivity in crystals,” Nanoscale, 17, 20803 (2025).
[109] Thakur, S., Giri, A., “Impact of carbon dioxide loading on the thermal conductivity of metal organic frameworks,” The Journal of Chemical Physics, 162 (15), (2025).
[108] Thakur, S., Giri, A., “Two-dimensional local correlations of octahedral tilts dictate thermal transport in three-dimensional metal halide perovskites,” Physical Review B, 111 (13), 134303 (2025).
[107] Karna, P., Giri A., “Pressure-tuning the spatial extension of polarons and charge mobilities in polar insulators”, Physical Review Materials 9 (3), 034604 (2025).
[106] Islam, Md.R., Karna, P., Bhatt, N., Thakur, S., Heinrich, H., Hirt, D.M., Zare, S., Jezewski, C., Lee, R.T.P., Tapily, K., Gaskins, J.T., Landon, C.D., King, S.W., Giri, A., Hopkins, P.E., “Unveiling phonon contributions to thermal conductivity and the applicability of the Wiedemann-Franz Law in ruthenium and tungsten thin films,” Advanced Functional Materials e11592 (2025). Preprint: https://arxiv.org/html/2505.07613v1. (2025)
[105] Islam, Md.R., Karna P., Tomko, J.A., Hoque, Md.S.B., Hoglund, E.R., Hirt, D.H., Aryana, K., Carver, C., Jezewski, Giri A., C., Landon, C.D., King, S.W., Hopkins, P.E., “Evaluating size effects on the thermal conductivity and electron-phonon scattering rates of copper thin films for experimental validation of Matthiessen’s rule,” Nature Communications 15, 9167 (2024).
[104] Dionne, J.C., Thakur, S., Scholz, N., Hopkins, P.E., Giri A., “Enhancing the thermal conductivity of semiconductor thin films via phonon funneling”, npj Computational Materials, 10 (1), 177 (2024).
[103] Bhatt. N, Karna, P., Thakur, S., Giri A., “Pressure-driven enhancement of phonon contribution to the thermal conductivity of iridium”, International Journal of Heat and Mass Transfer, 229, 125673 (2024).
[102] Karna, P., Giri A., “Electron–electron scattering limits thermal conductivity of metals under extremely high electron temperatures”, Journal of Physics: Condensed Matter 36 (34), 345701 (2024).
[101] Thakur, S., Giri, A., “Pushing the Limits of Heat Conduction in Covalent Organic Frameworks Through High‐Throughput Screening of Their Thermal Conductivity,” Small, 2401702 (2024).
[100] Pfeifer, T.W., Aller, H., Hoglund, E.R., Scott, E.A., Tomko, J.A., Ahmad, H., Doolittle, A., Giri, A., Hattar, K., McGaughey, A.J.H., Hopkins, P.E., “Ion irradiation induced crystalline disorder accelerates interfacial phonon conversion and reduces thermal boundary resistance,” Physical Review B 109, 165421 (2024).
[99] Milich, M.,* Schonfeld, H.B.,* Boboridis, K., Robba, D., Vlahovic, L., Konings, R., Braun, J.L., Gaskins, J.T., Bhatt, N., Giri. A., Hopkins, P.E., “Validation of the Wiedemann-Franz Law in solid and molten tungsten above 2000 K through thermal conductivity measurements via steady state temperature differential radiometry,” Physical Review Letters 132, 146303 (2024). *Joint First Authors *Editor’s Pick
[98] Karna, P., Islam M. R., Hoglund, E. R., Hopkins P. E., Giri A., “Electron-phonon coupling dictates electron mean free paths and negative thermal diffusion in metals”, Materials Today Chemistry, 37, 101991 (2024).
[97] Bhatt. N, Karna, P., Thakur, S., Giri A., “Transition from electron-dominated to phonon-driven thermal transport in tungsten under extreme pressures”, Physical Review Materials, 7, 11, 115001 (2023).
[96] Thakur, S., Giri A., “Reversible and high-contrast thermal conductivity switching in a flexible covalent organic framework possessing negative Poisson’s ratio”, Materials Horizons, 10, 5484-5491 (2023); Journal Cover
[95] Thakur, S., Giri A., “Supramolecular reinforcement drastically enhances thermal conductivity of interpenetrated covalent organic frameworks”, Journal of Materials Chemistry A, 11, 18660-18667 (2023).
[94] Kwon, J., Ma, Hao, Giri, A., Hopkins, P.E., Shustova, N., Tian, Z., “Thermal Conductivity of Covalent-Organic Frameworks,” ACS Nano, 17, 16, 15222–15230 (2023).
[93] Thakur, S., Giri A., “Role of Anharmonicity in Dictating the Thermal Boundary Conductance across Interfaces Comprised of Two-Dimensional Materials” Physical Review Applied, 20, 014039 (2023).
[92] Giri, A., Walton, S.G., Tomko, J., Bhatt, N., Johnson, M.J., Boris, D.R., Lu, G., Caldwell, J.D., Prezhdo, O.V., Hopkins, P.E., “Ultrafast and nanoscale energy transduction mechanisms and coupled thermal transport across interfaces,” ACS Nano DOI: 10.1021/acsnano.3c02417 (2023). Journal Cover
[91] Thakur, S., Giri A., “Origin of ultralow thermal conductivity in metal halide perovskites” ACS Applied Materials and Interfaces, 15, 22, 26755–26765 (2023).
[90] Rahman, Md. A., Thakur, S., Giri A., “Engineering the electronic and thermal properties of two-dimensional covalent organic frameworks”Journal of Physical Chemistry C, 127, 23, 11157–11166 (2023). Journal Cover
[89] Dionne, J.C., Rahman, Md. A., Giri A., “Graphullerite: A Thermally Conductive and Remarkably Ductile Allotrope of Polymerize Carbon” ACS Omega, 8, 17, 15751-15758 (2023). Journal Cover
[88] Karna, P., Giri A., “Effect of intense laser irradiation on the thermal transport properties of metals” Physical Review B, 107, 9, 09431 (2023).
[87] Hoque, Md.S.B., Brummel, I., Hoglund, E.R., Dionne, C.J., Aryana, K., Tomko, J.A., Gaskins, J.T., Hirt, D., Smith, S.W., Beechem, T., Howe, J.M., Giri, A., Ihlefeld, J.F., Hopkins, P.E., “Interface independent sound speed and thermal conductivity of atomic layer deposition-grown amorphous AlN/Al2O3 multilayers with varying oxygen composition,” Physical Review Materials, 7, 2, 025401 (2023).
[86] Meirzadeh, E., Evans, A., Rezaee, M., Milich, M., Dionne, C., Darlington, T., Bao, S.T., Bartholomew, A., Handa, T., Rizzo, D., Wiscons, R., Reza, M., Zangiabadi A., Fardian-Melamed, N., Crowther, A., Schuck, P., Basov, D. Zhu, X., Giri, A., Hopkins, P.E., Kim, P., Steigerwald, M., Yang, J., Nuckolls, C., Roy, X., “A few-layer covalent network of fullerenes,” Nature, 613, 71-76 (2023).
[85] Karna, P., Hoque, MSB., Thakur, S., Hopkins, P.E., Giri, A., “Direct measurement of ballistic and diffusive electron transport in gold,” Nano Letters, 23, 2, 491-496 (2023).
[84] Rahman, Md. A., Dionne, C.J., Giri, A., “Thermally conductive self-healing nanoporous materials based on hydrogen-bonded organic frameworks,” Nano Letters, 21, 8534 (2022).
[83] Thakur, S., Dai, Z., Karna, P., Padture, N. P., Giri, A., “Tailoring the Thermal Conductivity of Two-Dimensional Metal Halide Perovskites,” Materials Horizons 9, 3087 (2022).
[82] Giri, A., Thakur, S., Mattoni, A., “Molecular rotor-rotor heat diffusion at the origin of the enhanced thermal conductivity of hybrid perovskites at high temperatures,” Chemistry of Materials, 34, 21 (2022).
[81] Giri, A., Karna, P., Hopkins, P.E., “Exceptionally Enhanced Thermal Conductivity of Aluminum Driven by Extreme Pressures: A First-Principles Study,” Journal of Physical Chemistry Letters, 13, 10918–10923 (2022).
[80] Dionne, C.J., Giri, A., “Magnesium Doping Enhances Thermal Conductivity of Polymerized Fullerene Crystals,” Journal of Physical Chemistry C, 10 (2022).
[79] Thakur, S., Dionne, C.J., Karna, P., King, S.W., Lanford, W., Li, H., Banerjee, S., Merrill, D., Hopkins, P.E., Giri, A., “Density and atomic coordination dictate vibrational characteristics and thermal conductivity of amorphous silicon carbide,” Physical Review Materials 6, 094601 (2022).
[78] Rahman, M., Dionne, C., Giri, A., “Pore Size Dictates Anisotropic Thermal Conductivity of Two-Dimensional Covalent Organic Frameworks with Adsorbed Gases,” ACS Appl. Mater. Interfaces, 18, 21687–21695 (2022).
[77] Dionne, C., Rahman, M., Hopkins, P.E., Giri, A., “Supramolecular interactions lead to remarkably high thermal conductivities in interpenetrated two-dimensional porous crystals,” Nano Letters 22, 3071-3076 (2022).
[76] Giri, A., Evans, A., Rahman, M., McGaughey, A.J.H., Hopkins, P.E., “Highly negative Poisson’s ratio in thermally conductive covalent organic frameworks,” ACS Nano, 16, 2, 2843 (2022).
[75] Giri, A., Dionne, C.J., Hopkins, P.E., “Atomic coordination dictates vibrational characteristics and thermal conductivity in amorphous carbon,”, npj Computational Materials 8, 55 (2022).
[74] DeCoster, M.E., Babaei, H., Jung, S.S., Hassan, Z., Gaskins, J.T., Giri, A., Tiernan, E., Tomko, J.A., Baumgart, H., Norris, P.M., McGaughey, A.J.H., Wilmer, C., Redel, E., Giri, G., Hopkins, P.E., “Hybridization from guest-host interactions reduces the thermal conductivity of metal organic frameworks (MOFs),” Journal of the American Chemical Society 144, 3603-3613 (2022).
[73] Hopkins, P.E., Tomko, J.A., Giri, A., “Quasi-harmonic theory for phonon thermal boundary conductance at high temperatures,” Journal of Applied Physics 131, 015101 (2022).
[72] Rahman, M. A., Giri, A., “Uniquely anisotropic mechanical and thermal responses of hybrid organic-inorganic perovskites under uniaxial strain,” The Journal of Chemical Physics, 155, 124703 (2021).
[71] Giri, A., Hopkins, P.E., “Heat transfer and tunable thermal conductivity anisotropy in two-dimensional covalent organic frameworks with adsorbed gases,” Nano Letters 21, 6188-6193 (2021).
[70] Evans, A.M.,* Giri, A.,* Sangwan, V.K., Xun, S., Bartnof, M., Torres-Castanedo, C.G.,
[69] Giri, A., Cheaito, R., Gaskins, J.T., Mimura, T., Brown-Shaklee, H., Medlin, D., Ihlefeld, J., Hopkins, P.E. “Thickness independent vibrational thermal conductance across confined solid-solution thin films”, ACS Applied Materials & Interfaces 13, 12541- 12549 (2021).
[68] Bruan, J.L., King, S.W., Hoglund, E.R., Gharacheh, M.A., Scott, E.A., Giri, A., Tomko, J.A., Gaskins, J.T., Al-kukhun, A., Bhattarai, G., Paquette, M.M., Chollon, G., Willey, B., Antonelli, G.A., Gidley, D.W., Hwang, J., Howe, J.M., Hopkins, P.E. “Hydrogen effects on the thermal conductivity of delocalized vibrational modes in amorphous silicon nitride (a-SiNx:H)”, Physical Review Materials 5, 035604 (2021).
[67] Warzoha, R.J., Wilson, A.A., Donovan, B.F., Donmezer, N., Giri, A., Hopkins, P.E., Choi, S., Pahinkar, D., Shi, J., Graham, S., Tian, Z., Ruppalt, L. “Applications and impacts of nanoscale heat transport in electronics packaging”, Journal of Electronic Packaging, 143, 020804 (2021).
[66] Giri, A. “Origins of pressure-induced enhancement in thermal conductivity of hybrid inorganic-organic perovskites”, Nanoscale, 13 (2), 685-691 (2021).
[65] K. Aryana, J.T. Gaskins, J. Nag, D.A. Stewart, Z. Bai, S. Mukhopadhyay, J.C. Read, D.H. Olson, E.R. Hoglund, J.M. Howe, A. Giri, M.K. Grobis, P.E. Hopkins “Interface controlled thermal properties of ultra-thin chalcogenide-based phase change memory devices”, Nature Communications, 12, 774 (2021).
[64] Donovan, B. F., Warzoha, R. J., Cosby, T., Giri, A., Wilson, A. A., Borgdorff, A. J., Vu, N. T., Patterson, E. A., Gorzkowski, E. P. “Strained Polymer Thermal Conductivity Enhancement Counteracted by Additional Off-Axis Strain”, Macromolecules, 53, 11089-11097 (2020).
[63] Md. A.J. Rasel, A. Giri, D.H. Olson, C. Ni, P.E. Hopkins, J. Feser “Chain length dependence of thermal conductivity in 2D alkylammonium lead iodide single crystals”, ACS Applied Materials & Interfaces, 12, 53705-53711 (2020).
[62] F. Krahl, A. Giri, Md. S.B. Hoque, L. Sederholm, P.E. Hopkins, M. Karppinen “Experimental control and statistical analysis of thermal conductivity in ZnO-benzene multilayer thin films”, The Journal of Physical Chemistry C, 24, 24731-24739 (2020).
[61] Y.R. Koh, Z. Cheng, A. Mamum, A., Md. S. Hoque, Z. Liu, T. Bai, K. Hussain, M. E. Liao, R. Li, J.T. Gaskins, A. Giri, J. Tomko, J.L. Braun, M. Gaevski, E. Lee, L. Yates, M.S. Goorsky, T. Luo, A. Khan, S. Graham, P.E. Hopkins, P.E. “Bulk-like intrinsic phonon thermal conductivity of micrometer thick AlN films”, ACS Applied Materials & Interfaces, 12, 29443-29450 (2020).
[60] A. Giri, S.S. Chou, D.E. Drury, K.Q. Tomko, D.H Olson, J.T. Gaskins, B. Kaehr, P.E. Hopkins “Molecular tail chemistry controls thermal transport in fullerene films”, Physical Review Materials, 4, 065404 (2020).
[59] A. Giri., A. Chen, A. Mattoni, K. Aryana, D. Zhang, X. Hu, S.-H. Lee, J. Choi, P.E. Hopkins “Ultralow thermal conductivity of two-dimensional metal halide perovskites”, Nano Letters, 20, 3331-3337 (2020).
[58] A. Giri., P.E. Hopkins “Achieving a better heat conductor”, Nature Materials, 19, 481-490 (2020).
[57] A. Giri., M.V. Tokina, O.V. Prezhdo, P.E. Hopkins “Electron-phonon coupling and related transport properties of metals and intermetallic alloys from first principles”, Materials Today Physics, 12, 100175 (2020).
[56] A. Giri., P.E. Hopkins,“A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces”, Advanced Functional Materials, 30, 1903857 (2020).
[55] Y.-S. Wang, X. Zhou, J.A. Tomko, A. Giri., P.E. Hopkins, O.V. Prezhdo, “Electron-phonon relaxation at Au/Ti interfaces is robust to alloying: Ab initio nonadiabatic molecular dynamics”, The Journal of Physical Chemistry C, 123, 22842 (2019).
[54] A. Giri., P.E. Hopkins,“Resonant phonon modes in fullerene functionalized graphene lead to large tunability of thermal conductivity without impacting the mechanical properties”, Journal of Applied Physics, 125, 205102 (2019).
[53] A. Giri., J.T. Gaskins, Y.-S. Wang, O.V. Prezhdo, P.E. Hopkins,“First principles determination of ultrahigh electrical and thermal conductivity in free electron metals via pressure tuning the electron-phonon coupling factor”, Physical Review B, 99, 165139 (2019).
[52] J.A. Tomko, D.H. Olson, A. Giri., J.T. Gaskins, S.M. O’Malley, P.E. Hopkins,“Nanoscale wetting and energy transmission at solid-liquid interfaces”, Langmuir, 35, 2106-2114 (2019).
[51] A. Giri., J. Braun, D. Shima, S. Addamane, G. Balakrishnan, P.E. Hopkins,“Experimental Evidence of Suppression of Sub-Terahertz Phonons and Thermal Conductivity in GaAs/AlAs Superlattices Due to Extrinsic Scattering Processes”, The Journal of Physical Chemistry C , 122, 29577 (2018).
[50] A. Giri, J.A. Tomko, J.T. Gaskins, P.E. Hopkins,“Large tunability in the mechanical and thermal properties of carbon nanotube-fullerene hierarchical monoliths”, Nanoscale, 10, 22166 (2018).
[49] J.T. Gaskins, G. Kotsonis, A. Giri, S. Ju, A. Rohskopf, Y. Wang, T. Bai, E. Sachet, C.T. Shelton, Z. Liu, Z. Cheng, B.M. Foley, S. Graham, T. Luo, A. Henry, M.S. Goorsky, J. Shiomi, J.-P. Maria, P.E. Hopkins,“Thermal boundary conductance across heteroepitaxial ZnO/GaN interfaces: Assessment of the phonon gas model”, Nano Letters, 18, 7469 (2018).
[48] E.L Radue, J.A. Tomko, A. Giri, J.L. Braun, X. Zhou, O.V. Prezhdo, E.L. Runnerstrom, J.-P. Maria, P.E. Hopkins,“Hot electron thermoreflectance coefficient of gold during electron-phonon nonequilibrium”, ACS Photonics, 5, 4880 (2018).
[47] E.A Scott, S.W.Smith, M.D. Henry, C.M. Rost, A. Giri, J.T. Gaskins, S.S. Fields, S.T. Jaszewski, J.F. Ihlefeld, P.E. Hopkins,“Thermal resistance and heat capacity in hafnium zirconium oxide (Hf1−xZrxO2) dielectrics and ferroelectric thin films”, Applied Physics Letters, 113, 192901 (2018).
[46] S. Alaie, M.G. Baboly, Y.-B. Jiang, S. Rempe, D.H. Anjum, S. Chaieb, B.F. Donovan, A. Giri, C.J. Szwejkowski, J.T. Gaskins, M.M.M. Elahi, D.F. Goettler, J. Braun, P.E. Hopkins, Z.C. Leseman,“Reduction and increase in thermal conductivity of Si irradiated with Ga+ via focused ion beam” Applied Physics Letters , 113, 192901 (2018).
[45] J.L. Braun, C.M. Rost, M. Lim., A. Giri, D.H. Olson, G. Kotsonis, G. Stan, D.W. Brenner, J.P. Maria, P.E. Hopkins,“Charge induced disorder controls the thermal conductivity of entropy stabilized oxides” Advanced Materials, 1805004 (2018).
[44] A. Giri, S.W. King, W.A Lanford, A.B. Mei, D. Merrill, L. Li, R. Oviedo, J. Richards, D.H. Olson, J.L. Braun, J.T. Gaskins, F. Deangelis, A. Henry, P.E. Hopkins,“Interfacial defect vibrations enhance thermal transport in amorphous multilayers with ultrahigh thermal boundary conductance” Advanced Materials, 30, 1804097 (2018).
[43] A. Giri, P.E. Hopkins,“Giant reduction and tunability of the thermal conductivity of carbon nanotubes through low frequency resonant modes” Physical Review B., 98, 045421 (2018).
[42] S.G. Walton, B.M. Foley, J. Tomko, D.R. Boris, E.D. Gillman, S.C. Hernandez, A. Giri, Tz.B Petrova, P.E. Hopkins,“Plasma-surface interactions in atmospheric pressure plasmas: In situ measurements of electron heating in materials” Journal of Applied Physics, 124, 043301 (2018) *Editor’s Pick
[41] A. Giri, B.F. Donovan, P.E. Hopkins,“Localization of vibrational modes leads to reduced thermal conductivity of amorphous heterostructures” Physical Review Materials, 2, 056002 (2018).
[40] B.F. Donovan, W.A. Jensen, L. Chen, A. Giri, S.J. Poon, J.A. Floro, P.E. Hopkins,“Elastic mismatch induced reduction of the thermal conductivity of silicon with aluminum nanoinclusions” Applied Physics Letters, 112, 213103 (2018).
[39] M.E. DeCoster, K.E. Meyer, B.D. Piercy, J.T. Gaskins, B.F. Donovan, A. Giri, N.A. Strnad, D.M. Potrepka, A.A Wilson, M.D. Losego, P.E. Hopkins, “Density and size effects on the thermal conductivity of atomic layer deposited TiO2 and Al2O3 thin films” Thin Solid Films, 650, 71-77 (2018).
[38] F. Krahl, A. Giri, J.A. Tomko, T. Tynell, P.E. Hopkins, M. Karppinen, “Thermal conductivity reduction at inorganic-organic interfaces: From regular superlattices to irregular gradient layer sequences” Advanced Materials Interfaces, 5, 1701692 (2018).
[37] K. Freedy, A. Giri, B.M. Foley, M. Barone, P.E. Hopkins, S.J. McDonnell, “Titanium contacts to graphene: Process-induced variability in electronic and thermal transport” Nanotechnology, 29, 145201 (2018).
[36] A. Giri, J.L. Braun, P.E. Hopkins,“Reduced dependence of thermal conductivity on temperature and pressure of multi-atom component crystalline solid solutions” Journal of Applied Physics, 123, 015106 (2018).
[35] A. Giri, P.E. Hopkins,“Pronounced low-frequency vibrational thermal transport in C60 fullerite realized through pressure-dependent molecular dynamics simulations” Physical Review B, 96, 220303(R) (2017).
[34] X. Zhou, J. Jankowska, L. Li., A. Giri, P.E. Hopkins, O.V. Prezhdo, “Strong Influence of Ti Adhesion Layer on Electron-Phonon Relaxation in Thin Gold Films: Ab Initio Nonadiabatic Molecular Dynamics”, ACS Applied Materials and Interfaces 9, 43343 (2017).
[33] J.L. Braun, C.J. Szwejkowski, A. Giri, P.E. Hopkins, “On the steady-state temperature rise during laser heating of multilayer thin films in optical pump-probe techniques”, Journal of Heat Transfer, 140, 052801 (2018).
[32] C.M. Rost, J.L.Braun, Ferri, K., L. Backman, A. Giri, E. Opila, J.-P. Maria, P.E. Hopkins, “Hafnium nitride films for thermoreflectance transducers at high temperatures: Potential based on heating from laser absorption”, Applied Physics Letters 111, 151902 (2017).
[31] A. Giri, P.E. Hopkins,“Role of interfacial mode coupling of optical phonons on thermal boundary conductance”, Scientific Reports, 7, 11011 (2017).
[30] X. Zhou., L. Li, H. Dong, A. Giri, P.E. Hopkins, O.V. Prezhdo, “Temperature dependence of electron-phonon coupling interactions in gold films rationalized by time-domain ab initio analysis”, Journal of Physical Chemistry C, 121, 17488 (2017).
[29] J. Tomko, A. Giri, B. F. Donovan, D.M. Bubb, S.M. O’Malley, P.E. Hopkins, “Energy confinement and thermal boundary conductance effects on short-pulsed thermal ablation thresholds in thin films”, Physical Review B, 96, 014108 (2017).
[28] A. Giri, J.L. Braun, C.M. Rost, P.E. Hopkins, “On the minimum limit to thermal conductivity of multi-atom component crystalline solid solutions based on impurity mass scattering”, Scripta Materialia, 138, 134-138 (2017).
[27] A. Giri, J.L. Braun, J.A. Tomko, P.E. Hopkins, “Reducing the thermal conductivity of chemically ordered binary alloys below the alloy limit via the alteration of phonon dispersion relations”, Applied Physics Letters, 110, 233112 (2017).
[26] A. Giri, P.E. Hopkins,“Spectral Contributions to the Thermal Conductivity of C60 and the Fullerene Derivative PCBM”, Journal of Physical Chemistry Letters, 8, 2153-2157 (2017).
[25] B.F. Donovan, J.A. Tomko, A. Giri, D.H. Olson, J.L. Braun, J.T. Gaskins, P.E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance”, Review of Scientific Instruments, 88, 054903 (2017).
[24] C. J. Szwejkowski, A. Giri, B. Kaehr, R.J. Warzoha, B.F. Donovan, P.E. Hopkins, “Molecular Tuning of the Vibrational Thermal Transport Mechanisms in Fullerene Derivative Solutions”, ACS Nano, 11, 1389-1396 (2017).
[23] J. Hua, M. Giovanni, A. Giri, T. Tynell, W. Benjamin, K. Eero, P.E. Hopkins, K. Maarit, “Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin films”, Journal of Materials Science, 52, 6093-6099 (2017).
[22] A. Giri, J.L. Braun, P.E. Hopkins, “Implications of interfacial bond strength on the spectral contributions to thermal boundary conductance across solid, liquid, and gas interfaces: A molecular dynamics study”, The Journal of Physical Chemistry C, 120, 24847-24846 (2016).
[21] A. Giri, S.H. Wee, S. Jain, O. Hellwig, P.E. Hopkins, “Influence of chemical ordering on the thermal conductivity and electronic relaxation in FePt thin films in heat assisted magnetic recording applications”, Sci. Rep., 6, 32077 (2016).
[20] J.L. Braun, A. Giri, J.T. Gaskins, S.W King, M. Sato, T. Fujiseki, H. Fujiwara, P.E. Hopkins,“Breaking Network Connectivity Leads to Ultralow Thermal Conductivities in Fully Dense Amorphous Solids”, Applied Physics Letters, 109, 191905 (2016).
[19] L. Wang, R. Cheaito, J.L. Braun, A. Giri, P.E. Hopkins, “Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer”, Review of Scientific Instruments, 87, 094902 (2016).
[18] A. Giri, J.L.Braun, P.E. Hopkins, “Effect of crystalline/amorphous interfaces on thermal transport across confined thin films and superlattices”, Journal of Applied Physics, 119, 235305 (2016).
[17] J.L. Braun, C.H. Baker, A. Giri, M.Elahi, Artyushkova, K., Beechem, T.E., Norris, P.M., Leseman, Z.C., Gaskins, J.T., Hopkins, P.E., “Size effects on the thermal conductivity of amorphous silicon thin films”, Physical Review B, 93, 140201 (2016).
[15] A. Giri, P.E. Hopkins, “Analytical model for thermal boundary conductance and equilibrium thermal accommodation coefficient at solid/gas interfaces,” The Journal of Chemical Physics, 144, 084705 (2016).
[14] A. Giri, J. Niemela, C. J. Szwejkowski, M. Karppinen, P. E. Hopkins, “Reduction in thermal conductivity and tunable heat capacity of inorganic/organic hybrid superlattices,” Physical Review B, 93, 024201 (2016).
[13] A. Giri, P. E. Hopkins, J. G. Wessel, and J. C. Duda, “Kapitza resistance and the thermal conductivity of amorphous superlattices,” Journal of Applied Physics, 118, 165303 (2015).
[12] A. Giri, P. E. Hopkins, “Transient thermal and nonthermal electron and phonon relaxation after short-pulsed laser heating of metals,” Journal of Applied Physics, 118, 215101 (2015).
[11] J.-P. Niemela, A. Giri, P. E. Hopkins, M. Karppinen, “Ultra-low thermal conductivity in TiO2:C superlattices,”Journal of Materials Chemistry A, 3, 11527-11532 (2015).
[10] A. Giri, J. T. Gaskins, B. F. Donovan, C. Szwejkowski, R. Warzoha, M. A. Rodriguez, J. Ihlefeld, P. E. Hopkins, “Mechanisms of nonequilibrium electron-phonon coupling and thermal conductance at metal/non-metal interfaces,” Journal of Applied Physics, 117, 105105 (2015).
[9] C. Szwejkowski, N. Creange, K. Sun, A. Giri, B.F. Donovan, C. Constantin, P. E. Hopkins, “Size effects in the thermal conductivity of gallium oxide (beta-Ga2O3) films grown via openatmosphere annealing of gallium nitride (GaN),” Journal of Applied Physics, 117, 084308 (2015).
[8] A. Giri, J. T. Gaskins, B. M. Foley, R. Cheaito, P. E. Hopkins, “Experimental observation of the temperature dependence of nonequilibrium electron dynamics on electron-phonon coupling in thin gold films,” Journal of Applied Physics, 117, 044305 (2015).
[7] R. Cheaito, J. T. Gaskins, M. E. Caplan, B. F. Donovan, B. M. Foley, A. Giri, J. C. Duda, C. J. Szwejkowski, C. Constantin, H. J. Brown-Shaklee, J. F. Ihlefeld, P. E. Hopkins, “Thermal boundary conductance accumulation and interfacial phonon transmission: measurements and theory” Physical Review B, 91, 035423 (2015).
[6] A. Giri, P. E. Hopkins, “Spectral analysis of thermal boundary conductance across solid/classical liquid interfaces: a molecular dynamics study” Applied Physics Letters, 105, 033106 (2014).
[5] T. Tynell, A. Giri, J. T. Gaskins, P. E. Hopkins, P. Mele, K. Miyazaki, M. Karppinen, “Efficiently suppressed thermal conductivity in ZnO thin films via periodic introduction of organic layers” Journal of Materials Chemistry A, 2, 12150-12152 (2014).
[4] A. Giri, B. M. Foley, P. E. Hopkins, “Influence of hot electron scattering and electron-phonon interactions on thermal boundary conductance at metal/non-metal interfaces” Journal of Heat Transfer, 136, 092401 (2014).
[3] M. E. Caplan, A. Giri, P. E. Hopkins, “Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces” The Journal of Chemical Physics, 140, 154701 (2014).
[2] A. Giri, J. Tao, M. Kirca, and A. C. To, “Compressive behavior and deformation mechanism of nanoporous open-cell foam with ultrathin ligaments” Journal of Micromechanics and Nanomechanics, 4, SPECIAL ISSUE: Mechanics of Nanocomposites and Nanostructure, A4013012 (2014).
[1] A. Giri, J. Tao, M. Kirca, and A. C. To, “Mechanics of nanoporous metals,” in Handbook of Micromechanics and Nanomechanics, edited by S. Li and X. L. Gao (Pan Stanford, Singapore), pp. 827
Dankowicz: Positioning ME for the Future
Outgoing chair took critical steps to promote the success of a top-ranked department.